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ABSTRACT
The ability to identify people has numerous applications in-
cluding in smart buildings where the building can be cus-
tomized to the needs of its occupants or for other applica-
tions such as in assisted living and customer behavior anal-
ysis in commercial settings. There are different methods
used for occupant identification. Some are intrusive such as
using cameras or microphone and others require the users
to carry mobile gadgets to be identified. In this paper, we
present a nonintrusive method to identify people by sens-
ing their body shape and movement. Such information is
derived from using ultrasonic sensors to measure the height
and width as the occupant walks through the instrumen-
tal doorway. In fact, height and width are not unique to
every occupant, but extracting a set of features from the
variations in height and width makes identification possi-
ble. In this study, our system senses a stream of height
and width data, recognizes the walking event when a per-
son walks through the door, extracts features that capture
a person’s movement as well as physical shape. These fea-
tures are fed to our clustering algorithm that associates each
occupant with a distinct cluster. We deployed our system
for 1 month. We found out that our approach achieves 95%
accuracy with 20 occupants suggesting the suitability of our
approach in commercial building settings. In addition, we
found out that using girth to distinguish between occupants
is more successful than using height.
CCS Concepts
•Computer systems organization → Special purpose
systems; •Hardware → Sensor applications and de-
ployments;
Keywords
Indoor Identification; Sensor Networks; Smart Buildings;
Clustering; Machine Learning

1. INTRODUCTION
Identification and tracking are important for several Smart

Building applications such as occupancy driven energy effi-
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ciency, tracking in assisted living, occupant behavior anal-
ysis and personalized comfort adjustment. Developing non-
intrusive sensing technologies for the purpose of identifica-
tion is challenging and has attracted interests of different
research. Researchers have addressed this challenge with dif-
ferent approaches, including ultrasonic sensing using height
[1], vibration of footsteps sensing [2, 3, 4, 5], pyroelectric in-
frared [6], as well as WiFi RF spectrum [7, 8]. They provide
many useful insights on the non-intrusive sensing that could
be useful in building smart spaces applications. Develop-
ing scalable nonintrusive cost-effective sensing technologies
will enable the development of applications that improve
the safety of people and save energy and maintenance cost,
which will benefit both occupants and building owners. For
instance, assisted living buildings for people with amnesia
or Alzheimer’s disease host between 15 to 20 patients per
area. Cameras are used only in common areas making it
difficult to track patient when they go outside the common
areas which require an attendant to check on them every
30 minutes. Non-intrusive sensing technologies will give a
real time view of where patients are as it can be installed in
areas where cameras cannot be installed.
We introduce a nonintrusive indoor occupant’s identifica-
tion system that uses ultrasonic sensors in doorways. The
sensing technique computes occupant’s shape and movement
which are used to identify people. The solution uses three
ultrasonic sensors; one sensor is installed at the top of the
door frame to measure a person’s height, and two on the
side of the door frame to measure the person’s distance to
the sides sensors. The system uses the side sensors to cal-
culate the width of the person passing through the door.
Using the height and width data, the system extracts a set
of features to infer the occupant’s body shape and move-
ment. The identity is determined by a clustering algorithm
using these features to associate features with occupants and
thus the ability to identify is made possible. This solution
is cost effective since it uses off the shelf ultrasonic sensors
and is easily integrated into a door.
Clearly, such a system is subject to uncertainty as multiple
people can have similar height and width and the system
may fail to differentiate between them. We find that a com-
bination of body shape and time under the door (thus move-
ment) will increase the accuracy of the system. Our study
shows that indeed these parameters are key to differentiat-
ing between people, thus, helping us achieve 95% accuracy
for 20 people compared to the state-of-the-art.
We present the system design, sensing techniques, filter de-
sign to eliminate noise from the measurements, and use a



(a) Figure showing the con-
ceptual design of the sensor
instrumented door frame.

(b) Top view of the doorframe showing direction
detection as person walks through the door. UT
has not been depicted in this figure to emphasize
on the displacement between UL and UR

(c) Front view of the door
frame with the ultrasonic
sensors mounted.

Figure 1: Figure showing the sensor instrumented doorframe schematic figures and a photo of our current testbed.

clustering algorithm to identify occupants. We collected ex-
perimental data in a classroom of 20 people at the University
of Houston over a period of one month. Our results show
that it is possible to achieve an identification accuracy of
95%. Our contributions in this work are:

• We design a system that identifies occupants by com-
bining computed girth with the time they spend walk-
ing under the door.

• We investigate the accuracy of parameters associated
with height feature, namely the gait pattern bounce.
Our results show that gait is more accurate than height.

• We compare the accuracy of different combinations of
parameters in identifying occupants. The results show
that the girth and time provide more accurate results
that height and time. However, height could be used to
scale up the system furthermore by categorizing people
by their heights.

2. RELATED WORK
Occupant identification in buildings can be broken down

to two approaches: systems in which the occupants carry
a mobile gadget and systems that use sensors embedded in
building to sense the occupants unobtrusively. Mobile gad-
gets include RFID-based wearables for tracking users when
they cross a door [9], users’ smartphone for identification
and localization [10]. Motetrack uses RF signal strength
and a set of beacons deployed in the building and infers lo-
cation based on the RF signal strength [11]. BlueSentinel
uses iBeacon protocol which is based on Bluetooth Low En-
ergy (BLE) to infer the location [12]. These systems identify
occupants with high accuracy but suffer from missing a user
if she does not have the wearable. Wi-Fi-based systems such
as Redpin and Ariel achieve high accuracy in identifying and
detecting occupants’ location [13, 14].
The second category of systems use sensors installed in the
buildings to identify users. Different systems have been pro-
posed that use facial, fingerprint, iris and hand geometry
and achieved high accuracy [15, 16, 17, 18] but they raise
privacy concerns and some require user’s active interaction
with the system. Among the systems that use nonintrusive

sensors, the vibration of the footsteps has been proposed as
a method to detect occupants [2, 3, 4, 5], it achieves very
high accuracy rates however it cannot operate when multi-
ple occupants are present in the area. WiFi RF signal has
been used in previous work to identify people by harnessing
the RF reflections on the occupants [19, 20]. In [7, 8], the
authors use a Channel State Information (CSI) to infer gait
for person identification. However, they do not scale to over
six people with an accuracy of 80%. Moreover, measuring
height using ultrasonic sensor is another biometric identifier
in small populations [1]. Doorjamb uses height information,
walking direction, and tracking information to identify users
achieved a high accuracy rate within a population of 2-4 peo-
ple [21]. However, our system leverages height and width to
sensors to identify up to 20 people with an accuracy of 95%.

3. SYSTEM DESIGN
The system is designed to sense walkers’ body shape and

movement as they pass through the door. We design a door
frame that implements three ultrasonic sensors (see figure
1(a) and 1(c)). One sensor is placed on top facing down-
wards referred to as UT (Ultrasonic Top), and other two
sensors are placed on the sides horizontally at 1 meter high
referred to as UR (Ultrasonic Right) and UL (Ultrasonic
Left), which are at the right and left sides of the frame.
The sensor-instrumented door is installed in room 219 at
the Technology building at the University of Houston. The
sensor-instrumented door sends the extracted features to the
back end system to run the clustering algorithms and iden-
tify occupants.
The system includes four components: Sensing and calibra-
tion, event recognition, feature extraction, clustering and
decision making. Figure 2 depicts the process. The ultra-
sonic ping sensors compute the distance between the sensor
and the closest object (in this case a person) and generates
three streams of readings per walker. When a walking event
is detected the generated data is pre-processed and a set of
features is computed and extracted. These feature instances
are then used to build a clustering model for every user.
3.1 Sensing and Calibration
Sensors need calibration as signal acquisition and sam-

pling introduce errors in calculating the distance. For the



Figure 2: Sequence of operations for occupant identification
in a building.

sensor UT, the longest distance the ultrasonic pulse will
travel is 4.2 m which is twice the height of the door frame as
the ultrasound signal needs to go back and forth. Given the
speed of sound of 341 m/s, we estimate that it will travel
this distance (4.2 meters) in 12 ms, which represents the
maximum possible delay. For the sensors UL and UR which
are separated by a distance of 1.2 meters, the maximum
expected delay is 7ms. The three sensors are sampled se-
quentially to avoid cross-talk between sensors. The way we
sense a walking event is as follows: we send a beam from
one sensor and wait for the reflection to reach the sensor,
we compare the time it took with the maximum allocated
time for the sensor and set the node to sleep for the rest of
the allotted time. The purpose of this is to keep the sam-
pling rate at a stable fixed rate regardless of the walker’s
size. This also will prevent crosstalk between three ultra-
sonic sensors as it allocates enough time for the beam to be
sent and reflected back to the sensor before operating the
next sensor. In fact, synchronization between sensors is key
to avoiding crosstalk and reducing noise in distance mea-
surements.
The measured delay from UT is converted to height using
the following formula:
dheight(tUT ) = dmax_height − 34.3

2 tUT

where 34.3 is the distance, in cm, traveled by sound every 1
ms. The variable t is the delay in ms. We divide by 2 be-
cause the measured delay represents the time for the pulse
to go back and forth. dmax_height refers to the maximum
distance separating the sensor and the ground in the case of
UT. The maximum distance measured by UT, UL, and UR
in our testbed are respectively 212 cm, 124 cm,124 cm.
The measured distances are then converted to the width of
the person passing through the door using the following for-
mula:
dwidth(t) = dmaxwidth − 34.3

2 tUL − 34.3
2 tUR

When there is no one under the door frame, then the width
formula returns a negative figure, more exactly −dmaxwidth

because both distances computed from UL and UR will be
equal to dmaxwidth. To avoid this problem, we first check if
34.3

2 tUL = 34.3
2 tULR = dmaxwidth, if true we return 0, and if

not we compute the width using the formula.
Our first design uses periodic polling with an interval of
29ms to simplify the implementation. Periodic polling is
energy intensive and impacts the lifetime of the sensors,
therefore is not the best way to operate in real world appli-
cation. In a real world environment, we would add a motion
sensor to optimize the operation to activate the sampling
of the ultrasonic sensors when the motion sensor detects a
person close to the door frame. Adding a motion sensor
wouldn’t significantly increase the overall cost of the system
since an off-the-shelf costs as low as $5 and wouldn’t add

significant complexity to the system. In addition, activated
motion sensing is less energy intensive than running three
ultrasonic sensors continuously.

3.2 Walking Event Recognition
A Walking event refers to the stream of {UT,UL,UR}

readings. Every time a person walks through the door frame,
we receive a stream of data and the number of readings
varies between 35 and 40 depending on the speed of the per-
son. Figure 4(a) illustrates the data stream. The faster the
person walks, the fewer the readings. This stream of data
will contain noisy points and errors. These noisy points need
to be corrected and recovered before processing the features.
Since our testbed is in periodic polling, we get continuous
data stream from the ultrasonic sensors. To detect a walk-
ing event, we look at the height as a detection mechanism.
When there is no one under UT, we expect the maximum
value. Algorithm 1 shows how we extract the walking event
from a stream of data.
It has been shown that the average height of people in the
United States is 169 cm with a standard deviation of 7.5 cm
[22]. So a height interval of 3 standard deviations from the
mean should statistically cover 99% of the walkers assuming
height follows the Gaussian distribution. The lower end of
the interval would be 146.5 cm and we chose 140 cm as a
lower bound. The reason is that height measured by UT is
not necessary the ground truth and many times it is lower
because of how the person walks, especially if the walker is
looking a bit downwards or holding a backpack or just using
a smartphone. The walking event starts when the measured
height is at least 140cm and stops when the height is less
than 140 cm by allowing at most 4 consecutive points that
are out of this interval. This last condition is chosen to pre-
vent erroneous readings from making the system think the
walker is no longer at the door and gives the impression we
have multiple events. We chose 4 consecutive experimentally
because it yields the most accurate walking event.

Algorithm 1 Extract Walking Event
1: procedure Extract walking Event
2: missed← 0
3: min_height← 140
4: max_missed← 4
5: queue← FIFO Queue
6: walking_event← empty FIFO Queue
7: do
8: reading← Dequeue element from queue
9: if reading.height > min_height then
10: Enqueue reading to walking_event
11: missed← 0
12: else if missed < max_missed then
13: missed← missed + 1
14: else
15: return walking event
16: end if
17: while queue not empty
18: end procedure

3.2.1 Person Direction Recognition
The width sensors UL and UR are displaced in parallel

to the walking direction line. As the person is walking, one



Figure 3: Histogram of the distribution of adjacent width
measurements rate of change.

sensor is closer to her than the other and therefore the clos-
est will be the one to detect her by returning a non-default
(a default value means max width when no one is under
the door) value indicating it came in contact with a person.
Figure 1(b) shows how sensors UL and UR are displaced
and how this displacement helps detect the person direc-
tion. This displacement helps not only with person direction
recognition but also for more accurate width measurement
as shown in Section 4.4.
The direction is set when setting up the door frame in the
room. In our testbed, we positioned our door to have the
sensor UR closer to the entrance, so if a person is entering
the room, the first non-default reading will be from UR and
when exiting the first non-default reading will be coming
from UL. If a person intentionally rotates the door, then
our system will start giving wrong directions, but in a real
deployment, the sensors will be mounted on the door frame
by drilling a hole into the door and such an intentional ro-
tation would not be possible.

3.3 Noise Canceling and Correction
Once the walking event is recognized and its respective

sensory data stream is detected, we pre-process the data
to filter noisy points before the event is further processed.
We filter out the readings that are outside the interval [0,
Max Height] and more than 30% difference between adjacent
points. The reason is that we have observed that the width
varies approximatively by 15% and the latter is higher when
a person is carrying a purse. Figure 3 is a Histogram that
depicts the distribution of adjacent readings.
Once noisy points are identified, we need to either remove or
recover them. Since the height measure uses only UT, then
removing would not affect the overall height data. However,
data from UL and UR are computed in pairs and removing
one UR implies removing its equivalent UL or vice versa. For
example, if we remove UL at t1 but not UR at t1, we will
end up with more UR measures than UL measures and most
importantly, we will end up with pairs that did not occur at
the same time. Therefore, the best approach is to use linear
interpolation to replace the noisy values. Therefore, after
receiving the raw walking event data stream, we identify
the noisy values and replace them using linear interpolation.
The new stream of data is then used for feature extraction.

3.4 Main Features

To detect occupants, we first use the pre-processed stream
of data to extract a set of features that will be used to
detect and identify users. It is illustrated in Figure 4(a) and
Table 4(b). We experimented with several features including
max, min, average, bounce, girth, and time under the door.
Girth and time under door gave the best results for occupant
identification.

3.4.1 Girth
Girth is a circumference measurement around a person’s

waist. In order to compute the girth, we use the stream of
width data to create 2 point clouds where y is the instance
number multiplied by the distance traveled each sampling
interval and x is equal to width

2 . We generate two points,
(x,y) and (-x, y). We then construct the convex hull for
all the point clouds and calculate its perimeter using eu-
clidean distance as the distance measure. Assuming an av-
erage speed of 5 km/h, a person will walk 3.6 cm every 29
ms. The pseudocode for constructing the girth is presented
in Algorithm 2.

Algorithm 2 Girth Calculation Algorithm
1: procedure Compute girth
2: distance_walked_per_iteration← 3.6
3: edge← 0
4: xt ← width[t]

2
5: yt ← iterationt ∗ distance_walked_per_iteration

6: edge← edge +
√

(xt − xt−1)2 + (yt − yt−1)2

7: Return: girth← 2 * edge
8: end procedure
[1]

3.4.2 Time
Since everyone has a different walking speed, we measure

time indirectly by counting the number of interval time the
person spent under the door. Given the sampling rate, s,
(s=35Hz in the testbed), we calculate the time by dividing
the number of height measurements H = {h1, .., hn} by s
and width measurements W = {w1, .., wn} by s. We select
the result that gives the max time spent under the door, t,
is therefore given by:
t = 1

s
max(|H| , |W |) We take the maximum because noise

may alter the length of the H or W and therefore select the
longest since it was the least affected by noise.

3.4.3 Bounce
Bounce is a gait measure of how a person bounces as she

walks. Some people tend to bounce more than others when
walking. We capture bounce from the height measurement
by subtracting the minimum from maximum height. Given
height measurements H = {h1, .., hn}, we set Bounce =
max(H)−Min(H).

3.5 Other Features
3.5.1 Maximum, Minimum and Average Height
From the stream of height measures, we compute the min-

imum, maximum and average height. To decide which of the
three features is most appropriate for identification, we con-
ducted a small experiment where the same person performs



(a) Plot showing an instance of Height and Width
sensory readings as a function of time when a per-
son walked through the door.

Feature Value
Average Height 156.1
Maximum Height 163.8
Average Width 39.5
Maximum Width 42.1
Girth 83.1
Hand-Waist Distance 13.2
Bounce 19.7

(b) Table showing list of ex-
tracted features from the walk-
ing event height and width
readings.

Figure 4: Figure showing an instance of a walking event height and width readings and the extracted Features.

Figure 5: Box plot showing variance in average, minimum
and maximum height for 7 trials.

7 walking events under the door. We compute for every
event the minimum, maximum and average height. Figure
5 illustrates the data from the trials. Given a ground truth
of 180cm, we can see that the maximum feature is the clos-
est. However, we note that the average height is the feature
with the least variance and this means it is more consis-
tent for the same occupant. As consistency is important for
identification, we choose average height.

3.5.2 Average Width
Once a person passes through the door we compute the

person’s width. The width measure is independent of the
position of the occupant in the door i.e. if he is closer to
one edge of the door as opposed to the other, the width
measurement is still the same.

3.5.3 Body-Hand Distance (WH)
This feature captures how close a person’s hands are to

her body as she walks. As the walker swings her arms, the
UR or UL sometimes measure the distance to the waist and
sometimes to the arm. To compute this feature, we divide
the measurements into 2 groups. The ones closer to by at

most 10% of the minimum width and the others that are
farther by at least 15%. We calculate the average of every
group and return the difference. We do this for both sides
using UL and UR and take the maximum. The reason for
taking the maximum as opposed to the minimum or average
is that you have people one one hand in the pocket.

3.6 Feature Selection
Given the feature set generated by the system, choosing

a subset of features has been extensively discussed in the
literature. In this study, we use two methods to find the
find the most successful subset of features to use to iden-
tify occupants. First, we evaluate how would a feature set
composed of one feature perform and then evaluate pairs
of features’ accuracy. This approach is very similar to the
sequential search methods [23] where we start with one fea-
ture and add a second one to increase the goodness of our
dataset.
In the second method, we perform feature selection using the
Recursive Feature Elimination (RFE) algorithm [24] whose
goal is to find a subset of features that maximize accuracy
and increase the robustness of the identification. Since we
have 3 degrees of freedom, namely height, width and time,
we derive one feature from every degree of freedom to mini-
mize interdependence between the features. Principal Com-
ponent Analysis (PCA) has been widely used as a dimen-
sionality reduction method that leverages the variance to
measure the importance of features. In fact, we use PCA
to generate a new set of features that are a combination of
the input features to maximize the variance [25]. Therefore,
we first run RFE on the experimental dataset presented in
Section 4. We found that the 3 most important features
are girth, time and bounce. Then, we use PCA to create a
new set for building our model. To validate the model, we
search for the important features by forming a model for all
possible feature pairs and evaluate each model’s accuracy.

3.7 Occupant Identification
If a feature computed for a given person is consistent

across different instances of walking trials, this feature can
be used as a unique signature to identify the person. How-
ever, the feature should also meet an additional require-
ment: a feature computed for different people should be



different. We process all sensor data stream and extract a
set of features for the person. Since the system is unaware
of the walker but rather tags her with a feature set, we treat
this occupant identification problem as a clustering problem
rather than classification, where every user will have her own
cluster. In addition, the system does not need training to
work and therefore is able to differentiate between people
without prior information about the walkers.
Some of these features such as Girth and Bounce have been
shown to be very consistent for the same user while other
features failed. Other features such as Body-Hand distance
did not vary much among different people and therefore are
not be able to differentiate between different users. To ad-
dress this issue, we decided to combine features into pairs
and evaluate each pair to find the one that yields the highest
identification accuracy.
To achieve high identification accuracy, we chose DBSCAN
[26] as the clustering algorithm to use for multiple reasons:

• DBSCAN has been used in a widespread of application
and proven to be a powerful clustering algorithm.

• DBSCAN has 2 parameters: epsilon that allows choos-
ing how close the objects have to be. We chose a value
of 2 because the precision of the ultrasonic sensor is
1 cm and since many of the features use 2 ultrasonic
sensors as is the case of average width, then we expect
a deviation of 2 cm on average. Minpts defines the
minimum number of points to have in one cluster. We
chose a value of four because we had occupants walk
past the door for a minimum of four times. The value
of four for minpts works best in our dataset.

• DBSCAN is very well suited for such a problem.

4. EVALUATION
We describe the setup used for evaluating the occupant

identification system followed by evaluation results.

4.1 Testbed
The sensing testbed is composed of a door frame, three

Parallax Ultrasonic ping sensors model 28015, an Arduino
Uno board, and a Raspberry PI 2 Model B. Each door frame
has 3 ultrasonic sensors attached to it. Figure 1 shows the
testbed we built for this study. We sample ultrasonic de-
lay values which are later converted to distance at a rate
of 35Hz. We also have one Logitech C310 camera per door
that is used to collect the ground truth.
The sensing is done sequentially by Arduino Uno and there-
fore the data is read at separate times. Since height mea-
surement uses only UT, we do not consider the case of syn-
chronizing UT with the other sensors as important.
The sensors are attached to a board that is attached to the
frame as illustrated in Figure 1(c). However, this is not re-
quired by the system, it was designed for convenience but it
would work similarly if the sensors were actually mounted
inside the frame. The system is not susceptible to crosstalk
because the sensor sampling is performed sequentially giving
enough time for each sensor’s signal to travel to the target
and back. If installed in a wider door, this time parameters
must be changed but could be computed given the dimen-
sions of the door as shown in Section 3.1.
In order to compute the width of a person, we need both
UL and UR readings to be at the same time in order to

Figure 6: Figure showing the floorplan where lab room 219
(which was used for the experiment) is located.

have accurate width measure. To achieve this, we displace
the sensors by 1.2cm on the walking direction in order to
account for the temporal difference between the consecutive
samplings of UL and UR. This specific displacement distance
(1.2 cm) is chosen to account for the temporal difference in
sampling. Assuming the walker walks at an average speed
of 5 km/hr and having a sampling rate of 35Hz, the walker
travels a distance of 1.2 cm every 8 ms. Also, the order to
sampling the sensors is: UT → UL→ UR with a 8ms time
difference between UL and UR. Thus, this displacement is
crucial because though UL and UR are sampled at different
times, the width measurements of the walker though taken
at different times are the same points as if the person was
standing.

4.2 Experimental Setup and Ground Truth
We conducted our experiment in lab room 219 (see Figure

6)in Building T2 at the University of Houston for a month.
We recruited students from one of classes scheduled in the
room as participants. Their age varies between 18 and 30
years old. We informed them about the purpose of the ex-
periment and we asked them to walk naturally. The protocol
was approved by the University of Houston Committee for
the protection of Human Subjects. The door frame was at
the entrance of the room and there was enough space for
others to bypass it in case they don’t want to participate.
The camera was always recording. Whenever a person walks
through the door, a walking event is recorded with the start
and end time. Since we only keep records of when a person
walks into the door frame, every minute, the video footage
is processed and only the times when the walker(s) passed
is extracted. We keep the video recording starting 3 sec-
onds before the walking event start time. This extra time is
added on purpose so that we can see the whole event when
annotating the data.
Every time a person walks through the door, a stream of
data {UT, UL, UR} as shown in Figure 4(a) and video is
captured. Each stream is then converted to the set of fea-
tures extracted from the dataset. After one month which
marked the end of the experiment, we annotated the data
manually by looking at the video footages for every event
and marked the data with the person that walked.
The number of people that participated in this experiment
is fifty three. However, many of these participants passed
through the door only once or twice. We discard data for



Figure 7: Histogram showing the number of participants by
number of passes under the door frame during the study.

those participants from our dataset as the clustering algo-
rithm expects at least four points per cluster. We decided to
take top 20 people in terms of the number of walking events.
This group averaged 7.5 passes per person, with a maximum
of 17 passes and a minimum of 4; Figure 7 shows the distri-
bution. Eleven participants were male. 9 were female. We
did not measure the participants’ true heights or width but
it appeared to us that there was a fair distribution of body
shapes.

4.3 Evaluation Metric
Since we model our system using an unsupervised method,

training data is not required. Evaluation metrics such as Pu-
rity [27] have been proposed in literature. In fact, Purity is
calculate as the ratio of the count of the most frequent label
as a total number of labels in a particular cluster. How-
ever, this metric is unsuitable to evaluate our system be-
cause knowing how pure our clusters are does not indicate
about how well our algorithm is able to identify occupants.
We decide to evaluate it by dividing the dataset into a train-
ing and a testing dataset: 2/3 of the data for training and
the remaining 1/3 for testing.
The issue with clustering is that it can create the correct
number of clusters but may end up having different people
in one cluster thus creating impure clusters. That said, we
need to first find the feature pair that is able to generate the
correct number of clusters and for those pairs, we then asso-
ciate a cluster label with the class with the majority class.
For instance if a cluster is composed of instances of different
classes, then we label the cluster with the most frequently
observed class in the cluster. Even if some clusters may be
less pure, then this would affect the overall accuracy at the
testing phase. Therefore the most successful feature pair
would yield the purest clusters and highest accuracy.
Ideally, we should expect two instances of the same class to
belong to the same cluster. In other words, we would like
two different walking events of the same person to belong to
the same cluster. All the instances of possible True/False
Positives/Negatives are illustrated in table 1: We define ac-
curacy as:
accuracy = T P +T N

T P +F P +T N+F N
.

Table 1: Different outcomes from clustering

Same cluster Different cluster
Same Person True Positive (TP) False Negative (FN)
Different Person False Positive (FP) True Negative (TN)

Figure 8: Box plot comparing width measurements when
the sensors UL and UR are aligned Vs Displaced

4.4 Width Sensors Positioning Evaluation
The objective of this section is to evaluate if displacing the

sensors UL and UR (as depicted in Figure 1(b)) or aligning
them for measuring the walker’s width is useful. We con-
ducted an experiment where one person performed 6 passes
through the doorway with the sensor aligned and repeated
the same procedure having the sensors displaced.
With the width sensors were aligned, the occupant per-
formed 6 passes under the door with the hands raised. The
hands are raised to not bias the width measurements. The
same operation is repeated but with the sensors UL and
UR displaced by 1.2 cm as explained. The same occupant
walked for 6 times. Figure 8 illustrates the result of the ex-
periment.
We can see that displacing the sensors improves the accuracy
of width measurement. However, if we install the sensors in
an aligned fashion, we get more variation in width measure-
ments. In addition, the average width for all 6 passes is
40.25cm and 38.50cm respectively for the displaced sensors
and aligned whereas the ground truth is 40cm.
The reason why the aligned sensors generate more variation
is because since we sample sequentially, after sampling from
UR, the walker’s position has changed by the time sample
with UL. Therefore, both readings do not refer to the true
width and depending on how fast the person walks or the
direction (for example if he get’s closer to one side as he
walks), the width measurement will vary more.

4.5 Clustering with Single Features
We built a clustering model using one feature to evaluate

how much accuracy can we get using one feature. Table
2 illustrates the result of using a single feature to identify
occupants in a group of 20 people. None of the features
was able to get 90% accuracy though clustering with girth
appears to get close to 90%. Even though clustering with
average height has been used in previous studies to identify
occupants in smaller groups of 5 people [21], we find that it



Table 2: Accuracy achieved by clustering using different fea-
tures.

Feature Accuracy
Average Height 84.3%
Bounce 88.1%
Average Width 87.6%
Girth 89.5%
Time 82.6%
Body-Hand Distance 76.9%

Table 3: Accuracy (in %) achieved by clustering with feature
pairs constructed from the features in row and column.

Height Width Bounce Time Girth WH
Height 84.3 89.5 89.5 90.5 93.2 86.4
Width 87.6 90.5 91.0 93.7 87.2
Bounce 88.1 87.6 94.7 89.4
Time 82.6 95.4 85.2
Girth 89.5 90.3
WH 76.9

is better to cluster with Bounce rather than average height
to identify people as the identification accuracy is higher.

4.6 Clustering with Pairs of Features
We combined pairs of features and created a clustering

model for every pair using the training set and test the ac-
curacy of every model based on a pair of features. Table
3 illustrates the result. The pair (girth, time) achieved the
highest accuracy. Clustering with Girth achieved the high-
est accuracy in single feature clustering, so pairing it with
another feature seems to increase accuracy. However, time
is not accurate, but combining it with girth is most accurate
because because they do not commit the same mistake and
people with close girth values appear to have different time
values and vice versa. We should note that the pair (Bounce,
Average Height) performs better than (Average Height, Av-
erage Width) which proves that it is better to use Bounce
over Average Height. In Figure 9, the confusion matrix of
clustering with the pair (Girth ,Time) is illustrated. The
darkness of the color indicates the percentage of the trace
of the ith person (Pi, i = 0..19)which was recognized as the
i = jth person (Pj , j = 0..19) Using the confusion matrix, we
can observe how each person is identified and misidentified.
The confusion matrix shows that most of the occupants are
correctly identified all the time with the exception of person
2 and 9 which seem to confused with 2 other occupants. We
also observe some misidentification for 14 and 16.

4.7 Clustering with Three features
Using the RFE feature selection algorithm along with

PCA as shown Sections in 3.6 and ??, the three most im-
portant features are Girth, Time and Bounce.
Afterward, we used Principal Component Analysis (PCA)
and passed our data with only the features Girth, Time and
bounce. PCA performs a linear transformation on the fea-
tures and the resulting matrix has new latent variables based
upon a combination of the old ones.
We, therefore, build our DBSCAN model using 2/3 of the
data as we performed in the previous cases and test the ac-
curacy using the resulting model. Our new model achieved
an accuracy of 95.5% which is an increase of 0.1% over the

Figure 9: Confusion matrix showing the identification and
misidentification of the occupants and how which occupants
was identified as another.

previous model that uses only Girth and time.
We take 2 lessons from the following result:

• Bounce is the best feature that is derived from the UT,
which means that bounce is better able to identify a
person than maximum height as seen in previous stud-
ies [21]. In fact, clustering with Bounce only achieved
88.1% whereas average Height achieved 84.3%.

• Height does not significantly improve the overall ac-
curacy and therefore can be omitted from the study
because we would be able to reach the same accuracy
with only 2 sensors as opposed to three.

Thus we recommend to use only the two main features Girth
and time instead of including Bounce because the benefit
from including it is small.

4.8 Accuracy with Larger Number of Occu-
pants

To evaluate the efficacy of the technique as a function
of the number of users, we calculated the accuracy of the
technique in different population sizes. Figure 10 shows the
accuracy as a function of the number of occupants. As ex-
pected, the accuracy decreases as the population size in-
creases. We can observe that using the pair (Girth, time),
we are able to differentiate between people with an accu-
racy of 97% in the case of 5 people. Our system achieves
a slightly higher accuracy for the same number of people
compared to systems such as Doorjamb [21] which achieves
93% accuracy and Pan et al. footstep induced identification
system which achieves 96.5% accuracy[2]. Figure 10 shows
the plot of accuracy as a function of the number of occu-
pants for 2 clustering models. We show how the accuracy
of clustering with (Girth, Time) changes as the number of
occupants increases. We also compare it to clustering with
Average Height. We observe that clustering with the (Girth,
Time) not only achieves higher accuracy, but does maintain



Figure 10: Plot showing identification accuracy of clustering
with (Girth, Time) and clustering with Average Height as a
function of the number of occupants.

higher accuracy compared to clustering with average height
when we increase the number of occupants.

4.9 Robustness to Walking Angle
Girth is the most successful feature in differentiating be-

tween occupants as is shown in Table 2. One of the strengths
of girth as a feature is its ability to not change with the
direction of the walker. In fact, all width measure (mini-
mum, maximum and average) suffer from the direction of
the walker. The measures change drastically if a walker
walks straight towards the door or at an angle relative to
the door. However, girth does not appear to suffer from
the direction because it represents a circumference of the
person’s waist and therefore is insensitive to the angle of
walking when we make the measurements. We conducted
an experiment where one walker walks through the door at
the angles relative to the door of 0,45 degrees and 90 de-
grees. For each angle, the walker passed six times. For each
pass we computed the walker’s girth having the sensors UL
and UR displaced. Figure 11 shows a box plot of the girth
computed for every pass and every angle. We observe that
the mean girth does not vary much regardless of the angle at
which you walk. Also, most of the girth measures fall within
less than 1 cm away from the mean. We conclude that the
girth is not sensitive to the angle at which the person walks
which make it a practical feature to differentiate between
walkers.

4.10 Accuracy of Walking Direction
In an experiment with 30 walk-throughs (15 times each

direction), we found that the system can determine the di-
rection of walk-through at 90% accuracy for walking speed
faster than 5 km/hr and 100% accuracy for slower walk-
throughs.

5. PRACTICAL CHALLENGES
We discuss a set of challenges that we face in real world de-

ployment of the door frame. We also discuss ways to tackle
these issues.
Multiple entries In this study, we assume that only one
occupant passes through the door at a time. The features

Figure 11: Box Plot showing Girth sensing distribution for
three walking multiple angles relative to the door.

extracted assume that there is only one person. If more
than one person walks through the door simultaneously, the
whole stream will be seen as one person with an unusual
width and time. To deal with multiple simultaneous entries
per door, our system needs to disaggregate the data into
multiple walkers. In the case of large doors that are de-
signed for multiple entries, we can extend them by adding
an extra UT to capture the second walker.
Higher number of users Previous methods have scaled
their system up to 5-6 people whereas we were able to ac-
curately identify up to 20 people. However, as the number
of users increases past 20, the identification accuracy would
decrease because the similarity between different features
tends to become more probable. However, Height was not
used for identification and therefore could be used to push
further the number of people by grouping them by height
and considering them as different groups.
Impact of belongings A person carrying a backpack or
a woman holding a purse will be reflected in the data and
drive the overall identification accuracy down. However, the
bias arising from extra objects follows a pattern and can be
removed. For instance, a purse can be detected by noting a
higher body-hand distance on the hand carrying the purse
compared to the other hand. In the case of a backpack, the
height sensor will show a unique pattern showing a person
carrying a backpack. These cases could be solved individ-
ually by identifying them first and pruning the data from
such a bias.
Impact of Walking pattern If a person walks faster or
slower, the data stream length will be impacted because
she will spend more/less time under the door. However, in
our studies we make two observations: (1) speed among the
same person rarely varies outside of the average mean time
± sampling time, (2) it was observed that only three partici-
pants had different speeds. Sometimes the features from one
subject created multiple (in our data up to three) clusters
corresponding to different walking speeds and patterns for
that subject. However, each cluster always was associated
with a single subject. Thus there was never an ambiguity
in mapping from a cluster to an individual. We believe this
result holds in general but we have not performed experi-
ments in other settings to confirm.
People with disability Our current deployment does not



account for people with special disability. For instance peo-
ple with wheelchairs would appear as having the same width
and height and may fail to distinguish between them. More-
over, People with crutches usually walk slower. However, we
may be able to detect such cases by observing a more square
girth shape rather than a regular oval shaped one.
Low Power Sensing In the current setup, the sensors sam-
ple continuously and independently of whether there is an
occupant. However, this would pose a problem in a real-
world deployment because the current setup is energy inef-
ficient. We suggest adding a passive motion detector and
only when a person is detected, we activate the ultrasonic
sampling. This would make the system much more energy
efficient because only when a person approaches the door
that we start sampling.

6. CONCLUSIONS
We designed and implemented a system that uses ultra-

sonic sensors in doorways to identify occupants in commer-
cial buildings. The door measures body shape and move-
ment as the features for identification purposes. We de-
ployed the testbed for one month in a lab room at the Uni-
versity of Houston. Our system was able to identify people
with an accuracy of 95% in a group of 20 people.
The sensors generate a stream of height and width measures
whenever an occupant passes under the doorway. From this
stream, we extract a set of features that capture body shape
and movement of the occupants. We investigated different
features and their combinations and found that the combi-
nation of the person’s girth and her walking speed is the
best way to distinguish among 20 people with an accuracy
of 95%. We also found that clustering using bounce as a
feature is more successful than average height in identifying
occupants. However, bounce did not contribute significantly
to increasing the accuracy when included as a third feature
for clustering. On the hand, Height could be used to group
occupants in order to scale up the system to larger popula-
tions.
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