
 
 

 
 

Abstract 
Buildings make a city’s landscape and are home to its people. 
The demand for smart buildings and housing is growing by 
the need for cities to make their buildings more efficient, 
green and livable.  This emergent intelligence is underpinned 
by the use of Information and Communications Technology 
(ICT) linked by Pervasive Sensing and real-time data analyt-
ics. In a typical growth of smart buildings, Smart Campuses 
are going to be amazing community hubs which will be more 
sustainable, efficient and supportive of its inhabitants. In this 
regard, huge amount of useful and real-time generated data 
are being analyzed to help people and machines infer instant 
decisions in relation to energy efficiency. However, because 
of different terminologies used by different players, struc-
tural, representational and semantic heterogeneity constrain 
the interoperability between applications and misleads to 
adaptive and context-aware control behavior. In this paper, 
the focus is to alleviate the current problem by designing a 
semantic framework that represents the smart campus data 
and activities in an ontological model. Also, the framework 
is deepened by an Artificial Intelligent (AI) method using 
Weighted Case Based Reasoning (WCBR) for enabling con-
text awareness.  An illustration will be the elaboration of an 
adaptive and autonomous control of HVAC (Heating Venti-
lation and Air Conditioning) system, in this example the 
WCBR is discussed and case representation, case adaptation, 
and similarity computation are sketched in detail. 

Introduction   
In the USA, given the fact that the country consumes almost 
20% of the world’s energy, it is very vulnerable to energy 
scarcity and therefore an effort is made in the direction of 
energy consumption reduction. In this regards, Living Cam-
pus is the centerpiece of the University of Houston which 
tends to integrate technologies of digital living and provides 
comfortable, secure, and convenient living style as well as 
preserving the key elements of energy efficiency. According 
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to similar projects (Guan, Xu, & Jia, 2010), the Living Cam-
pus estimates about 30-40% of energy savings by harnessing 
Information and Communication Technologies. As a matter 
of fact, energy efficiency lowers the cost of the energy down 
to 2.8 cents per kWh (Molina, 2014). This perspective put 
impetus on ICTs communities to enhance the awareness of 
the cyber, physical, and social contexts and provide essential 
supports in forms of services, applications, and so forth. 
Nevertheless, data provided by the pervasive sensor network 
present multilevel heterogeneity encompassing syntactical, 
structural and representational dimensions. Thus, it results 
in a schema conflict and tailor the currently used techniques 
such as machine learning and interaction models to a spe-
cific set of data and sensors. This tight coupling creates a 
status quo and inhibits the deployment of new technologies 
into the environment, which in turn significantly reduces the 
environment’s long-term usefulness(Wemlinger & Holder, 
2011) (Dendani, Khadir, & Guessoum, 2012). 

One solution to that is to consider Context-Aware aspect 
in Energy Control Operations which allow adapting to the 
context and catering to highly dynamic environments. Ac-
cordingly, Context-Aware Living Campus Ontology (cal-
cont) model was developed in order to provide comprehen-
sive knowledge base that includes different concepts needed 
to realize energy efficient, intelligent control mechanisms.  

In addition, giving the fact that the environment is highly 
dynamic, the system can’t envision all control situations by 
the ontological-based reasoning. Yet, designing exhaustive 
list of rules is quiet difficult. In this paper, CBR-based ap-
proach is presented as an alternative to Rule Based System. 
It provides a flexible adaptation control mechanism by its 
ability to reach inferences and give recommendations based 
on knowledge from previous problem cases. In addition, the 
approach denotes a machine learning paradigm that enables 
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sustained and incremental learning with every new experi-
ence.  

In this paper, a method to support context awareness and 
handle control operations in the living campus environment 
is presented. The method is based on knowledge representa-
tion and sharing. The outcome is a homogenous, shareable 
resources environment and a paradigm for supporting con-
text-aware decisions. In addition, an incremental learning 
paradigm has been sketched with its representation, match-
ing and adaptation steps. 

In his section an introduction of this work is presented. In 
the second section calcont model is presented to facilitate 
explicit context representation and semantic context shar-
ing. In the third section CBR-based approach for decision 
making and learning is developed. The fourth section pre-
sents the method evaluation and results. Last section con-
cludes this work. 

Context Modeling and Reasoning 
The ability to take into account the digital and physical en-
vironment, and the context of the user makes a space smart. 
In this work, Context means any information used to de-
scribe indoor environment of a space or that can be relevant 
for its energy efficiency.  A space is a bounded place which 
has some devices and accommodates users’ activities. 

Semantic Framework of the Living Campus is identified 
as a paradigm in which various kinds of information from 
heterogeneous sources are pulled together forming a unified 
representation model. This representation has to be agreed 
on and shared by all participating devices and services. This 
view is enabled by Semantic Web as defined by Berners-
Lee as the web of data that creates a universal medium for 
the exchange of data (Herman, 2001).  This vision will ena-
ble automated negotiation and retrieval of data and other 
schemas in Smart Environment  (Pasha & Ahmad, 2008). 
Consequently, the drive to develop Intelligent Distributed 
Applications has put emphasis on adopting semantic model-
ing and reasoning of context and W3C standards such as 
SPARQL for seamless access to data. 

Ontology, potentially, provides well-founded mechanism 
for representing and reasoning over the context and it ena-
bles semantic interpretation and information fusion pro-
cesses. Literally, Ontology is a formally-defined vocabulary 
for a particular domain of interest, it is generally considered 
as a set of entities, relations, functions, axioms and in-
stances. The use of ontologies gives several benefits, such 
as information search and retrieval, knowledge elicitation, 
knowledge modeling, and knowledge representation. In this 
vein calcont is designed to represent Campus System capa-
bilities and support interoperation between currently availa-
ble and future applications of energy efficiency.  

In its representation, calcont has stressed three major sub-
sets; context - is physical information characterizing the 
space including indoor climate conditions, weather infor-
mation and time. Platform - inspired from the work on 
DogOnt ontology (Bonino & Corno, 2008), this concept rep-
resents the device that has some roles of sensing or actuat-
ing, with its characteristics, functionalities, states and their 
eventual commands or notification. User – describes user 
profile, preferences and feedback.  

CBR, as proposed by Schank (A. F. Bobick, S. S. Intille, J. 
W. Davis, F. Baird, C. S. Pinhanez, L. W. Campbell, Y. A. 
Ivanov, A. Schütte, 1999) , draws on cognitive theories of 
human memory, problem solving, and Learning (Kolodner 
& Schank, Roger C. (Ed); Langer, 1994; Leake, 1998). It 
has been formally described as a cycle with four major steps 
including representation, Retrieval, Reuse, Revision, and 
Retention (V. Ricquebourg, D. Durand, D. Menga, B. 
Marhic, L. Delahoche, C. Loge, 2007). Figure 1 shows the 
calcont’s design. 

Case Representations 
Case representation is a vital concept in CBR as it allows for 
better assessment of the similarities of current problems 
compared to past cases. The knowledge base (case-base) 
stores information about conditions (problems) and actions 
(solutions) for previous control situations. Case Ontology is 
used to represent knowledge of different cases and hold new 
learning experiences. As a matter of fact, representing cases 
with ontological model leads to their easy selection owing 
to the fact that syntactic matching provided by triples form 
allow for high accuracy and also the search of information 
using SPARQL language is straightforward and optimized 
by nature. Case ontology is part of calcont and represents 
successful experienced controls by description taken deci-
sion according to their context. It contains the concept case 
that describes case types; description, subsumes the case 
main points (problem and solution); and Index which de-
scribes objects involved in the case and integrate the domain 
model concepts with the rest of the ontology. The figure 1 
shows calcont ontology with case ontology part. 

Case is primary defined by an auto incremental ID, the 
other information in the header are EnvironmentID, Control 
Entity, Timestamp and Survival Value. The context space’ 
features describe the context’s attributes in the form (sub-
jects, predicates, objects) as in the triples store. Predicate is 
a property for the subject of the statement, the subject is the 
concept involved and object is the range of the predicate. 
The predicates are biased by weights to express their influ-
ence on the control since attributes may not have the same 
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impact over a decision taken. The group of experts estab-
lish the ideal weights for the context attributes and the action 
rate that ideal control strategy should have. Weights are ly-
ing in the unit interval and summing to one. In the control 
space, outcome describes how successful the solution is, the 

action is the control taken in the case and the feedback is the 
opinion/reaction of users over this solution. Figure 2 illus-
trate four different control cases. 
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Figure 1 calcont Model representation 

Regulate the temperature by occupancy  
CaseID Control Entity TimeStamp Surv. value 
C1 HVAC 09/23/14/10:55 am 2.8 

Context Space 
Weight Subject Predicate Obj 

0.2 Lab221 hasTemperature 73 
0.1 HoustonWeather hasOutsidehumidity 63 
0.1 HoustonWeather hasOutsidetemperature 85 
0,2 Lab221 hasCO2 663 
0.4 Lab221 hasOccupancy 4 
Control Space 
Feedback Highly Satisfied 
Action Open  Damper 35% 

 
Regulate the freshness of the air 
caseID Control Entity Date/Time Surv. value 

C2 HVAC 09/23/14 10:55am  1.3 
Context Space 
Weight Subject Predicate Object 
0.1 HoustonWeather hasOutsideTemperature 75 
0.4 Lab221 hasCO2 950 
0.2 Lab221 hasOccupancy 4 
0.3 Lab221 hasVolume 679 
Control Space 
Feedback Satisfied 
Action Open  Damper  65% 

 
Regulate temperature and humidity when empty of users 
caseID Control Entity Date/Time Surv. value 
C3 HVAC 09/20/14/06:55 pm 1.9 

Control Space 
Weight Subject Predicate Object 
0.1 Lan221 hasType 220 
0.1 Lab221 hasTemperature 75 
0.1 Lab221 hasHumidity 55 
0.7 Lab221 hasOccupancy 0 
Solution 
Feedback Highly satisfied 
Action Open  Damper  51% 

 
Regulate the temperature by preference   
caseID Control Entity Date/Time Surv. value 
C4 HVAC 09/21/14 09:45am 2.5 

Control Space 
Weight Subject Predicate Object 
0.3 Lab221 hasTemperature 75 

0.7 UserProfile hasPrefernceVote 68 
Solution 
Feedback Satisfied 
Action Open  Damper 70% 

Figure 2 Case Representation of four different cases  

Matching Cases  
Matching serves to measure the degree of similarity between 
case and context by comparing their triples and features in 
order to retrieve best cases for a given context. In the match-
ing process, the similarity measure is performed by compar-
ing between case’s features and context’s data both stored 
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in the RDF triple store and modeled by calcont ontology. 
The similarity refers to the syntactic similarity because the 
semantics correlations are already assured by the ontology 
structure. For this purpose, the String Match (SM) of current 
context over case-base is calculated. Assuming L is the list 
of processing concepts in the current context and CC (Case 
Concepts) is the processing concepts in the case. Processing 
concepts represents an arrow in the ontology and it’s re-
stricted to the subject (domain) and its predicate (property) 
(e.g. (lab221, hasHumidity)). So, for each case C in the case-
base, String Match is calculated by: 

SM (C) = {x ∈ L / ∃y ∈ CC, E(x, y) = 0} 
Where E(x,y) is the Evenshtein distance, a similarity 

functions based on the distance concept. This later returns 
the string edits operations needed to go from one couple 
(subject, predicate) into another. It is equal to zero iff strings 
are equal and it is at most the length of the longer string. The 
set SM (C) retains the elements of L that are syntactically 
similar elements comparing to the case C. The SM(C) metric 
represent the number of concepts in common between the 
case and the context. To select similar case, a threshold t, 
defined from experiments, is settled to assess the similarity 
difference among cases. So, for each case: 

{     
card(L) − card(SM (C))  ≤ t      the case is retained  
card(L) − card(SM (C)) > t    the case is declined     

Also, As the control can be subject to different context 
attributes, it’s argued that the control case is relevant if the 
accumulation of common attributes’ weights is more than a 
certain threshold t’, given by expert or deduced from exper-
iment. Thus, if the accumulation of common attributes’ 
weights is higher than t’, the case is considered suitable for 
biasing the control decision over the context. 

Case Adaptation 
It has been argued that adaptation is the most important step 
of CBR as it adds intelligence to what would otherwise be 
simple pattern matchers. The adaptation means developing 
a solution to find a best match set from existing cases. In 
CBR, the best match sometimes is not a single case, but a 
combination of cases. For high precision of control, the best 
match can be the first nearest neighbor of the current context 
if it exist, elsewhere the best match is a combination of num-
ber of solutions which show a similarity tradeoff between 
the current context and previous cases.  

The adaptation allows the calculation of the concluding 
control rate for the actual context by reusing retrieved past 
control cases Therefore, to assess attributes’ values changes, 
membership functions are used to apprehend the variances 
that occur. To draw these functions, the historical records 
and the range of attributes are used. Therefore, giving a con-
text X, for every retrieved case C, the distance to the context 
is calculated by Fuzzified Weighted Euclidean Distance us-
ing the formula:  

𝑑(𝑋, 𝐶) = (∑ 𝑤𝑖

𝑖=𝑛

𝑖=1
(𝐹|𝑥𝑖 − 𝑐𝑖|)2)1/2 

Where 𝑥𝑖 and 𝑐𝑖 are the ‘objects’ (data properties) corre-
sponding to the triples of matched attributes (subject, predi-
cate) and 𝐹(𝑥𝑖 − 𝑐𝑖) is the fuzzified partial distance. For the 
unique case when there is an identical case (d(X,C)=0), the 
case’s solution is adopted.   

Case Retaining 
Retaining the case is the process of incorporating the new 
case into the case-base. This involves the procedure of 
choosing the information to retain and keep its visibility for 
future retrieval. For this purpose, each case is associated 
with a survival value SR which reflects how active the case 
is in the control system, and serves as a case maintenance 
basis. The increment or decrement of the survival value of a 
case depends upon its satisfaction degree. There are differ-
ent levels of satisfaction, if the case is highly satisfied, that 
means it’s satisfaction degree ‘Sat’ is more than 0.80; satis-
fied: 0.65 < 𝑆𝑎𝑡 < 0.80; so so: 0.45 < 𝑆𝑎𝑡 < 0.65; unsat-
isfied: 0.25 < 𝑆𝑎𝑡 < 0.45 and highly unsatisfied: 𝑆𝑎𝑡 <
0.10.  

Initially, when a new case is added in the system, it’s 
given an initial survival degree equal to the threshold to sur-
vive. After, when the case is selected for the adaptation of 
new context, its survival value is updated by:  

𝑆𝑅(𝑛𝑒𝑤)(𝐶) =  𝑆𝑅(𝑜𝑙𝑑)(𝐶) + ∆𝑆𝑅(𝐶)    

Where ∆𝑆𝑅(𝐶) = (𝑆𝑎𝑡(𝐶) − 0.45) × 𝛼, Sat(C) is the 
satisfaction degree (feedback) of users over the case, and 𝛼 
represents the learning rate, set to 0.1 for slowly adjust-
ing SR(C). Otherwise, for new adapted control, its survival 
value is computed by: 

SR(X) = ∑ 𝑆𝑖𝑚(𝑋,𝐶𝑖)∗𝑆𝑅(𝐶𝑖)𝑛
𝑖=1

𝑛
+ ∆𝑆𝑅(𝑋) 

Where SR(𝐶𝑖) is the survival value of the similar case 
𝐶𝑖, 𝑛 is the number of similar cases contributing to the ad-
aptation of  X,  𝐶𝑖 is 𝑖𝑡ℎ reference case and 𝑆𝑖𝑚(𝑋, 𝐶𝑖) is the 
solution similarity between X and 𝐶𝑖. And ∆𝑆𝑅(𝑋) is calcu-
lated by the same as selected case. The 𝛼 is used to balance 
user satisfaction and case similarity in retaining an adapted 
case. They can be changed according to how the system pre-
fers user feedback or case similarity. 

The system enters the step of Case Retain if the reference 
solution has a higher user satisfaction (i.e. survival value is 
over a pre-defined survival threshold 𝛿𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙); otherwise 
the system directly discards the case.  

 
For precise Indoor HVAC control many parameters should 
be considered such as space characteristics, exterior 
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weather, and number of users, in addition to user profile 
which handle user preferences and desires. To implement 
the proposed approach, a prototype has been developed 
within the confines of the Wireless and Optical Network La-
boratory in the college of technology that houses the smart 
campus mock-up for ongoing researches. The prototype is 
composed of three sensor nodes per room where each sensor 
node is composed of a temperature, humidity, occupancy 
and CO2 sensors that are built on an Arduino board. These 
sensor nodes communicate with a sensor node gateway that 
uses Raspberry PI as a hardware component. Every set of 
Raspberry PI + 3 Arduino nodes represent a wireless sensor 
network that can be deployed in every room. The gateway 
of every wireless sensor network sends the data generated 
by each sensor and communicates it to the open source Mid-
dleware on a periodic basis (every 1s). Protégé version 4 is 
used to represent the ontology and Quest –Ontop- to map 
the ontology to relational database. 

Representation 
Earlier in this empirical experience, some controls has been 
manipulated manually by HVAC experts and feedbacks are 
collected from users. This experience allow to weight con-
text’s attributes, arrange cases’ circumstances and store 
them in the case-base.  

Figure 2 shows four selected cases where the context con-
sidered was indoor temperature, humidity and CO2 concen-
tration, outside temperature, number of occupancy, room’s 
type, room’s volume and capacity. For instance, in the case 
1, the decision has been inferred by associating the follow-
ing parameters: temperature, season, outside temperature, 
occupancy, with respectively the following weights: 0.4; 
0.1; 0.1; 0.4. The following of this experiment is going to be 
used to prove the CBR-based approach sketched in this pa-
per. 

Retrieving 
It’s worthy to notice that for each control case, the consid-
ered parameters don’t have equal influence on the decision 
taken. Having said that, certain contexts have dissimilar pa-
rameters from the case already stored, the challenge is to 
take decision in the existence of unlike context information 
or in the lack of part of it. Therefore, to retrieve the relevant 
cases for the context, the case matching algorithm is exe-
cuted by choosing t=2 which means that cases that have at 
least 50% of attributes in common with the context query 
are accepted. The actual context attributes are extracted by 
querying RDF triples with SPARQL, figure 3 and figure 4 
show the request and the result of current context. 

Figure 3 actual context extraction 

From this extraction, the set of processing triples is L= 
((Lab221, hasTemperature), (Lab221, hasHumdity), 
(Lab221, hasCO2)), so for each case C in the case-base, the 
String Matching is calculated as follow: 

x For C1, SM(L)={( Lab221, hasTemperature), (Lab221, 
hasCO2)} implies card(L) − card(SM (C)) =2 

x For C2, SM(L)={( Lab221, hasTemperature), (Lab221, 
hasHumidity)} implies card(L) − card(SM (C)) =2 

x For C3, SM(L)={ (Lab221, hasCO2)} implies 
card(L) − card(SM (C)) =1 

x For C4, SM(L)={( Lab221, hasTemperature)} implies 
card(L) − card(SM (C)) = 1 

So, only case C1 and case C2 are eligible for the match-
ing. Then a second check is performed for common attrib-
utes in the non-selected case that have weight accumulation 
over 0.5 (𝑡’ chosen to 0.5). In this test, (Lab221, hasCO2) 
in case 3 has only 0.3 and the same for (Lab221, hasTemper-
ature) in case 4. 

Adaptation 
In the adaptation step, the formula of Fuzzified Weighted 
Euclidean Distance is used to calculate the context distance 
to the retrieved cases. The membership functions of the 
three parameters involved in the context is presented in Fig-
ure 4. 

 
Figure 4 Membership functions of temperature, CO2 and Humid-

ity variances 

That is, 𝑑(𝑋, 𝐶1) and 𝑑(𝑋, 𝐶2) represent respectively the 
influence of 𝐶1and 𝐶2 respectively on X: 
𝑑(𝑋, 𝐶1) = (∑ 𝑤𝑖

𝑖=𝑛
𝑖=1 (𝐹(𝑥𝑖 − 𝑐𝑖))2)1/2=0.3 

 𝑑(𝑋, 𝐶2) = (∑ 𝑤𝑖
𝑖=𝑛
𝑖=1 (𝐹(𝑥𝑖 − 𝑐𝑖))2)1/2=0.29 

As shown from distances values, there is no identical case 
to the context, so the calculation of a tradeoff among the 
nearest neighbors is directed. AC1 is the action taken in the 
case C1, which is opening air damper at 35%, and AC2 is 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
SELECT ?subject ?type ?Object 
WHERE { 
  ?subject rdf:type ?type  

Subject Predicate Obj 

Lab221 hasTemperature 78 

Lab221 hasHumidity 58.5 

  FILTER ( regex (?subject,"^lab221$") )  
  FILTER ( regex (?Time,"ActualTime") ) 

Lab221 hasCO2 599 
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the action taken in the case C2 (opening the air damper at 
65%). The average of these two values is:  

0.29
0.29 + 0.3

∗ 35% +
0.3

0.29 + 0.3
∗ 65% = 50.29 

Which means that the new context has inferred to open the 
air damper by 50.29%. 

After inferring this new control solution, the case-base is 
updated by new survival values of cases participating in the 
adaptation process, and the new solution’s survival value is 
calculated based on user’s feedback. 

Related Work 

Smart Cities and Energy Efficiency 
Numerous funding agencies such as the National Science 
Foundation and the U.S. Department of Energy have been 
funding projects that aim to increase energy efficiency in 
neighborhoods and cities, adding more renewable energies 
and reduction of greenhouse gases. Cyber-Enabled Efficient 
Energy Management of Structures (Braun, R., Hoff, B., 
Johnson, K., Mehta, D., Moore, K., Simões, M., & Vincent, 
2014)  sets a goal to integrally and laterally optimize energy 
consumption within a building using ICT and comprehen-
sive sensing techniques, dynamic graphs and disturbance 
control for reliability escalation. SEEMPubS (Torino, 2014) 
aims at increasing green energy by implementing an ICT-
based service in public buildings to manage the energy con-
sumption. SEEDS (“Self Learning Energy Efficient 
builDings and open Spaces,” 2014)  aims at developing ICT 
tools for the management of energy use in buildings and 
open spaces. eDIANA (EU, 2014c) aimed in building’s en-
ergy efficiency using embedded  devices by dividing the 
control in cells (buildings) and microcell (rooms). 

In a wider scale, efforts have been deeply investigated to-
wards supporting cities and regions in taking ambitious and 
pioneering measures towards lowering energy cost through 
sustainable use and production of energy. In this vein, 
IREEN (EU, 2014f) , EFFESUS (EU, 2014d), CONCERTO 
(EU, 2014b) PLEEC (EU, 2014g) are using a set of strate-
gies and exploiting the best practices in ICTs to realize en-
ergy efficiency in the scale of city. CELSIUS (EU, 2014a) 
demonstrates and promotess the integration of smart district 
heating and smart district cooling by minimizing its opera-
tional costs and carbon emissions while maximizing its en-
ergy efficiency. EU-GUGLE (EU, 2014e) aims to demon-
strate the feasibility of nearly-zero energy building renova-
tion models in 6 pilot cities in view of triggering large-scale, 
Europe-wide replication in smart cities and communities by 
2020. 

Context –awareness 
Context-Aware is one of the vital characteristics of smart 
environment. There are several facets of context-awareness 
regarding the tackled issue, e.g., interoperability, online rea-
soning and decision support system, intelligent monitoring 
and controlling, increased thermal comfort, to cite the most 
relevant.   

In the literature, many works have concerned one or mul-
tiple aspects together. In (Ranganathan & Campbell, 2003) 
the authors propose a context model based on first order 
predicate calculus to express complex contextual rules 
which enables automated inductive and deductive reason-
ing.(Satterfield, Reichherzer, Coffey, & El-Sheikh, 2012) 
Designed a smart home system with a multi-agent middle 
layer to study case based reasoning methods for activity 
recognition by representing and matching among cases us-
ing Resource Description Framework RDF-ontology. 
(García-Herranz, Haya, & Alamán, 2010)proposes an appli-
cation-independent indirect control programming system to 
program complex behaviors with the simplicity required to 
allow unexperienced users to program their smart environ-
ments. In this vein, the idea of combining ontology (domain 
knowledge) with CBR-based systems for knowledge man-
agement has been dealt with by many approaches (V. 
Ricquebourg, D. Durand, D. Menga, B. Marhic, L. 
Delahoche, C. Loge, 2007) (T. A. Nguyen, A. Raspitzu, 
2013) (Stevenson, Knox, Dobson, & Nixon, 2009). But very 
little or none is explicitly tailored to the needs of energy ef-
ficiency and increase of occupant thermal comfort within 
heterogeneous and dynamic smart environments. This ap-
proach shows a process of monitoring and control using con-
text awareness and based on an ontological model that pro-
vide the knowledge expansion.  

Conclusion  
In this work, a context-aware, weighted CBR approach is 
presented to autonomously control electrical equipment for 
energy efficiency. The approach is based on an ontological 
model to avoid interoperability among applications and fa-
cilitate the retrieval of information. This Artificial Intelli-
gent method allows to infer contextualized and adaptable 
controls to support system to take decisions. In addition, un-
like existing approaches (e.g. based on complex HVAC con-
trol models), this method is a model-free controller and en-
compasses an incremental learning. 

Currently we are evaluating our approach and we are in 
the process of completing the architecture of our adaptation 
and learning tool. In the medium term, the objective is to 
propose a global optimization that involves set of local con-
trols. The challenge is to assure the coherence of the trigger-
ing controls while performing global optimization and as-
sessing the global learning from local attainments. 
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